Sunghyun Kim (pdf)

Staff Researcher at Material Research Center,
Samsung Advanced Institute of Technology (SAIT)
130 Samsung-ro, Yeongtong-gu, Suwon-si,
Gyeonggi-do, 443-803, Republic of Korea
:email: frssp.kim@gmail.com | google scholar google scholar | :house: frssp.github.io | :octocat: frssp | orcid 0000-0001-5072-6801

Research Mission

To identify and exploit structure-property relationships to design and optimize functional materials for, including but not limited to, electronic and optoelectronic applications. I explore the fundamental nature of materials including imperfections and their interaction with light. I aim to tackle technical challenges and to establish reliable theory to be able to calculate all properties of any materials via multiscale materials theory such as First-principles calculations and tight-binding modeling.

Technical Skill

  • First-principles calculations within the Density Functional Theory (DFT) framework and tight-binding modeling
  • Experience in molecular dynamics simulations and finite-difference modeling
  • Experience in VASP, QE, Wannier90, LAMMPS, GULP, Phonopy, etc.
  • Programing: Python, Julia, C/C++, FORTRAN

Education

  • Ph.D. in Physics: KAIST, Republic of Korea, 2016
    (Dissertation: Theoretical study on doping efficiency in silicon nanowires supervised by Prof. K. J. Chang)
  • B.S. in Physics: KAIST, Republic of Korea, 2010

Academic Research Experience

  • Postdoctoral Research Associate, Department of Materials, Imperial College London, 2017 - 2020 (PI Prof. Aron Walsh)
  • Postdoctoral Research Associate, Department of Physics, KAIST, 2016 - 2017 (PI Prof. K. J. Chang)
  • Undergraduate internship, Department of Physics, University of Cambridge, 2006 (Advised by Dr. Pietro Cicuta)

Extracurricular Activities

  • United Nations peacekeeping mission (UNIFIL)
  • Swimming

    Publications

  1. Duk-Hyun Choe, Sunghyun Kim, Taehwan Moon, Sanghyun Jo, Hagyoul Bae, Seung-Geol Nam, Yun Seong Lee, and Jinseong Heo, Unexpectedly low barrier of ferroelectric switching in HfO2 via topological domain walls, Mater. Today (In press).

  2. Lucy D. Whalley, Puck van Gerwen, Jarvist M. Frost, Sunghyun Kim, Samantha N. Hood, and Aron Walsh, Giant Huang–Rhys Factor for Electron Capture by the Iodine Intersitial in Perovskite Solar Cells, J. Am. Chem. Soc. 143, 9123–9128 (2021).

  3. Sunghyun Kim and Aron Walsh, Ab initio calculation of the detailed balance limit to the photovoltaic efficiency of single p-n junction kesterite solar cells, Appl. Phys. Lett. 118, 243905 (2021).

  4. Andrea Crovetto, Sunghyun Kim, Moritz Fischer, Nicolas Stenger, Aron Walsh, Ib Chorkendorff, and Peter C. K. Vesborg, Assessing the defect tolerance of kesterite-inspired solar absorbers, Energy Environ. Sci. 13, 3489-3503 (2020).

  5. Sunghyun Kim, Samantha N. Hood, Ji-Sang Park, Lucy D. Whalley, and Aron Walsh, Quick-start quide for first-principles modelling of point defects in crystalline materiasl, J. Phys. Energy 2, 036001 (2020).

  6. Sunghyun Kim, and Aron Walsh, Comment on “Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron-hole recombination”, arXiv:2003.05394.

  7. Sunghyun Kim, Samantha N. Hood, Puck van Gerwen, Lucy D. Whalley, and Aron Walsh, CarrierCapture.jl: Anharmonic Carrier Capture, J. Open Source Softw. 5, 2102 (2020).

  8. Sunghyun Kim, José A. Márquez, Thomas Unold, and Aron Walsh, Upper limit to the photovoltaic efficiency of imperfect crystals, Energy Environ. Sci. 13, 1481 (2020).

  9. Kazuki Morita, Ji-Sang Park, Sunghyun Kim, Kenji Yasuoka, and Aron Walsh, Crystal Engineering of $\boldsymbol{\mathrm{Bi_2WO_6}}$ to Polar Aurivillius-Phase Oxyhalides, J. Phys. Chem. 123, 29155 (2019).

  10. Ernest Pastor, Ji-Sang Park, Ludmilla Steier, Sunghyun Kim, Michael Grätzel, James R. Durrant, Aron Walsh, and Artem A. Bakulin, In situ observation of picosecond polaron self-localisation in α-$\boldsymbol{\mathrm{Fe_2O_3}}$ photoelectrochemical cells, Nat. Comm. 10, 3962 (2019).

  11. Young-Kwang Jung, Joaquín Calbo, Ji-Sang Park, Lucy D. Whalley, Sunghyun Kim, and Aron Walsh, Intrinsic doping limit and defect-assisted luminescence in $\boldsymbol{\mathrm{Cs_4PbBr_6}}$, J. Mater. Chem. A 7, 20254 (2019).

  12. Sunghyun Kim, Samantha N. Hood, and Aron Walsh, Anharmonic Lattice Relaxation during Non-radiative Carrier Capture, Phys. Rev. B 100, 041202(R) (2019).

  13. Sunghyun Kim, Ji-Sang Park, Samantha N. Hood, and Aron Walsh, Lone-pair effect on carrier capture in $\boldsymbol{\mathrm{Cu_{2}ZnSnS_{4}}}$ solar cells, J. Mater. Chem. A 7, 2686 (2019).

  14. Ji-Sang Park, Sunghyun Kim, Samantha N. Hood, and Aron Walsh, Open-circuit voltage deficit in $\boldsymbol{\mathrm{Cu_{2}ZnSnS_{4}}}$ solar cells by interface bandgap narrowing, Appl. Phys. Lett. 113, 212103 (2018).

  15. Ji-Sang Park, Sunghyun Kim, and Aron Walsh, Stability and electronic properties of planar defects in quaternary $\boldsymbol{\mathrm{I_2}}$-II-IV-$\boldsymbol{\mathrm{VI_4}}$ semiconductors, J. Appl. Phys. 124, 165705 (2018).

  16. MinJoong Kim, Sunghyun Kim, Dong Hoon Song, Se Kwon Oh, Kee Joo Chang, and Eun Ae Cho, Promotion of electrochemical oxygen evolution reaction by chemical coupling of cobalt to molybdenum carbide, Appl. Catal. B 227, 340 (2018).

  17. Ji-Sang Park, Sunghyun Kim, Zijuan Xie, and Aron Walsh, Point defect engineering in thin-film solar cells, Nat. Rev. Mat. 3, 194 (2018).

  18. Bartomeu Monserrat, Ji-Sang Park, Sunghyun Kim, and Aron Walsh, Role of electron-phonon coupling and thermal expansion on band gaps, carrier mobility, and interfacial offsets in kesterite thin-film solar cells, Appl. Phys. Lett. 112, 193903 (2018).

  19. Sunghyun Kim, Ji-Sang Park, and Aron Walsh, Identification of Killer Defects in Kesterite Thin-Film Solar Cells, ACS Energy Lett. 3, 496 (2018).

  20. Ji-Sang Park, Sunghyun Kim, and Aron Walsh, Opposing effects of stacking faults and antisite domain boundaries on the conduction band edge in kesterite quaternary semiconductors, Phys. Rev. Mat. 2, 014602 (2018).

  21. Woo Hyun Han, Sunghyun Kim, In-Ho Lee, and K. J. Chang, Prediction of Green Phosphorus with Tunable Direct Band Gap and High Mobility, J. Phys. Chem. Lett. 8, 4627(2017).

  22. Sunghyun Kim, Woo Hyun Han, In-Ho Lee, and K. J. Chang, Boron Triangular Kagome Lattice with Half-Metallic Ferromagnetism, Scientific Reports 7, 7279 (2017).

  23. Ha-Jun Sung, Sunghyun Kim, In-Ho Lee, and K. J. Chang, Semimetallic carbon allotrope with topological nodal line in mixed sp$\boldsymbol{\mathrm{^3}}$-sp$\boldsymbol{\mathrm{^2}}$ bonding networks, NPG Asia Materials 9, e361 (2017).

  24. Woo Hyun Han, Young Jun Oh, Duk-Hyun Choe, Sunghyun Kim, In-Ho Lee, and Kee Joo Chang, Three-dimensional buckled honeycomb boron lattice with vacancies as an intermediate phase on the transition pathway from $\boldsymbol{\mathrm{\alpha}}$-B to $\boldsymbol{\mathrm{\gamma}}$-B, NPG Asia Materials 9, e400 (2017).

  25. Elisabeth Pratidhina, Sunghyun Kim, and K. J. Chang, Design of Dipole-Allowed Direct Band Gaps in Ge/Sn Core–Shell Nanowires, J. Phys. Chem. C 120, 28169 (2016).

  26. In-Ho Lee, Young Jun Oh, Sunghyun Kim, Jooyoung Lee, and K. J. Chang, Ab initio materials design using conformational space annealing and its application to searching for direct band gap silicon crystals, Comp. Phys. Comm. 203, 110 (2016).

  27. Young Jun Oh, Sunghyun Kim, In-Ho Lee, Jooyoung Lee, and K. J. Chang, Direct band gap carbon superlattices with efficient optical transition, Phys. Rev. B 93, 085201 (2016).

  28. Young Jun Oh, In-Ho Lee, Sunghyun Kim, Jooyoung Lee, and K. J. Chang, Dipole-allowed direct band gap silicon superlattices, Sci. Rep. 8, 18086 (2015).

  29. In-Ho Lee, Jooyoung Lee, Young Jun Oh, Sunghyun Kim, and K. J. Chang, Computational search for direct band gap silicon crystals, Phys. Rev. B 90, 115209 (2014).

  30. Sunghyun Kim, Ji-Sang Park, and K. J. Chang, Finite-size supercell correction scheme for charged defects in one-dimensional systems, Phys. Rev. B 90, 085435 (2014).

  31. Sunghyun Kim, Ji-Sang Park, and K. J. Chang, Stability and Segregation of B and P Dopants in Si/SiO$\boldsymbol{\mathsf{_2}}$ Core–Shell Nanowires, Nano lett. 12, 5068 (2012).